【专栏】跟波利亚学解题(6)
一道几何题为什么欧几里德能够做出来我们不能,是因为他比我们都更了解几何图形有哪些性质,借助于一个性质,他很容易就能抵达问题的彼岸;反之,对于不知道某个性质的我们,倒过来试图“发现”需要这样的性质有时几乎是不可能的。
2. 知识,知识
如果你是一个熟练的解题者,你也许会发现,除了一些非常一般性的、本质的思维法则之外,将不同“能力”的解题者区分开来的,实际上还是知识。知识是解题过程中的罗塞塔碑石。一道几何题为什么欧几里德能够做出来我们不能,是因为欧几里德比我们所有人都更了解几何图形有哪些性质,借助于一个性质,他很容易就能抵达问题的彼岸;反之,对于不知道某个性质的我们,倒过来试图“发现”需要这样的性质有时几乎是不可能的。有人说数学是在黑暗中摸索的学科,是有道理的。并不是所有的问题都能够通过演绎、归纳、类比等手法解出来的。这方面,费马大定理就是一个绝好的例子,《费马大定理:一个困惑了世间智者358年的谜》[1]一书描述了费马大定理从诞生到被解决的整个过程,事实上,通过对费马大定理本身的考察,几乎是毫无希望解决这个问题的,我们根本不能推导出“好,这里我只需要这样一个性质,就可以解决它了”,也许大多数时候我们可以,但那或者是因为我们有已知的知识,或者这样的归约很显然。而对于一些致命的问题,譬如费马大定理,最重要的归约却是由别人在根本不是为了解决费马大定理的过程中得出来的。运气好的话,我们在既有的知识系统中会有这样的定理可以用于归约,运气不好的话,就得去摸索了。
作者:刘未鹏 出版:电子工业出版社
所幸的是,绝大多数问题并不像费马大定理这样难以解决。而且绝大多数问题需要用到的知识,在现有的知识系统里面都是存在的。我们只要掌握得足够好,就有希望联想起来,并用于解题。
当然,也有许多题目,求解它们的那个关键的知识可以通过考察题目本身蕴涵的条件来获得,这类题目就是测试思维本身的能力的好题目了。而如果这个性质根本无法通过对题目本身的考察得出来,那么这个题目测试的就是知识储备以及联想能力。
(待续;此文的修订版已收录《暗时间》一书,由电子工业出版社2011年8月出版。作者于2009年7月获得南京大学计算机系硕士学位,现在微软亚洲研究院创新工程中心从事软件研发工程师工作。)
参考资料:
[1]《费马大定理:一个困惑了世间智者358年的谜》 http://book.douban.com/subject/1322358/
网络编辑:小碧