【专栏】康托尔、哥德尔、图灵——永恒的金色对角线(2)

这个证明相信每个程序员都能够容易的看懂。然而,这个看似不可捉摸的技巧背后其实隐藏着深刻的数学原理(甚至是哲学原理)。在没有认识到这一数学原理之前,至少我当时是对于图灵如何想出这一绝妙证明感到无法理解。

图灵的停机问题(The Halting Problem)

我们还是从图灵著名的停机问题说起,一来它相对来说是我们要说的几个定理当中最简单的,二来它也最贴近程序员。实际上,我以前曾写过一篇关于图灵机的文章,有兴趣的读者可以从那篇开始,那篇主要是从理论上阐述,所以这里我们打算避开抽象的理论,换一种符合程序员思维习惯的直观方式来加以解释。


作者:刘未鹏 出版:电子工业出版社

停机问题

不存在这样一个程序(算法),它能够计算任何程序(算法)在给定输入上是否会结束(停机)。

那么,如何来证明这个停机问题呢?反证。假设我们某一天真做出了这么一个极度聪明的万能算法(就叫God_algo吧),你只要给它一段程序(二进制描述),再给它这段程序的输入,它就能告诉你这段程序在这个输入上会不会结束(停机),我们来编写一下我们的这个算法吧:

bool God_algo(char* program, char* input)

{

if(<program> halts on <input>)

return true;

return false;

}

这里我们假设if的判断语句里面是你天才思考的结晶,它能够像上帝一样洞察一切程序的宿命。现在,我们从这个God_algo出发导出一个新的算法:

bool Satan_algo(char* program)

{

if( God_algo(program, program) ){

while(1); // loop forever!

return false; // can never get here!

}

else

return true;

}

正如它的名字所暗示的那样,这个算法便是一切邪恶[1]的根源了。当我们把这个算法运用到它自身身上时,会发生什么呢?

Satan_algo(Satan_algo);

我们来分析一下这行简单的调用:

显然,Satan_algo(Satan_algo)这个调用要么能够运行结束返回(停机),要么不能返回(loop forever)。

如果它能够结束,那么Santa_algo算法里面的那个if判断就会成立(因为God_algo(Santa_algo,Santa_algo)将会返回true),从而程序便进入那个包含一个无穷循环while(1);的if分支,于是这个Satan_algo(Satan_algo)调用便永远不会返回(结束)了。

而如果Satan_algo(Satan_algo)不能结束(停机)呢,则if判断就会失败,从而选择另一个if分支并返回true,即Satan_algo(Satan_algo)又能够返回(停机)。

总之,我们有:

Satan_algo(Satan_algo)能够停机 => 它不能停机

Satan_algo(Satan_algo)不能停机 => 它能够停机

所以它停也不是,不停也不是。左右矛盾。

于是,我们的假设,即God_algo算法的存在性,便不成立了。正如拉格朗日所说:“陛下,我们不需要(上帝)这个假设”[2]。

这个证明相信每个程序员都能够容易的看懂。然而,这个看似不可捉摸的技巧背后其实隐藏着深刻的数学原理(甚至是哲学原理)。在没有认识到这一数学原理之前,至少我当时是对于图灵如何想出这一绝妙证明感到无法理解。但后面,在介绍完了与图灵的停机问题“同构”的Y combinator之后,我们会深入哥德尔的不完备性定理,在理解了哥德尔不完备性定理之后,我们从这一同样绝妙的定理出发,就会突然发现,离停机问题和神奇的Y combinator只是咫尺之遥而已。当然,最后我们会回溯到一切的尽头,康托尔那里,看看停机问题、Y combinator、以及不完备性定理是如何自然而然地由康托尔的对角线方法推导出来的,我们将会看到这些看似神奇的构造性证明的背后,其实是一个简洁优美的数学方法在起作用。

【注释】

[1]特指上面那个算法的名字satan。

[2]《数学—确定性的丧失》

(待续;此文的修订版已收录《暗时间》一书,由电子工业出版社2011年8月出版。作者于2009年7月获得南京大学计算机系硕士学位,现在微软亚洲研究院创新工程中心从事软件研发工程师工作。)

网络编辑:谢小跳

{{ isview_popup.firstLine }}{{ isview_popup.highlight }}

{{ isview_popup.secondLine }}

{{ isview_popup.buttonText }}